The input mobility is an important vibro-acoustic parameter used by engineers in the industrial design process. In fact, this information guides the choice of the connection between the vibrational source and the receiver. To select the most effective connection points, the input mobility is characterized at every possible location of the receiver structure leading to a mapping of the input mobility. Several works propose to compute the full map by averaging the input mobility in a given frequency bands over a Finite Elements (FE) mesh of the receiver structure. By nature, the input mobility is a Frequency Response Function (FRF); consequently, it does not consider the frequency content of the source. This paper presents a method to compute a full map of input power instead of input mobility. The proposed method uses a modal decomposition on the receiver structure, source frequency behavior and frequency integration by introducing frequency weighting coefficients (Human vibration perception and source cycle use in real conditions). Thus, a single map is provided, that condensate the information of the input power, for the real source, allowing the engineer to make the best choice of the source-receiver connections early in the design process. Several examples are presented to demonstrate the usefulness of the proposed method.


    Access

    Check access

    Check availability in my library

    Order at Subito €


    Export, share and cite



    Title :

    Power Input Mapping for Vibro-Acoustic Design


    Additional title:

    Sae Technical Papers


    Contributors:

    Conference:

    11th International Styrian Noise, Vibration & Harshness Congress: The European Automotive Noise Conference ; 2020



    Publication date :

    2020-09-30




    Type of media :

    Conference paper


    Type of material :

    Print


    Language :

    English




    Vibro-Acoustic Analysis Tools for Antenna Reflector Design

    Rioboo, J. L. / European Space Agency | British Library Conference Proceedings | 1999


    Vibro-acoustic design engineering using virtual and hybrid models

    Van der Auweraer, H. / McCulloch, C. / Van der Linden, P. | Tema Archive | 2003