Hydrodynamic stress induced by marine currents subject subsea pipelines to failure vulnerability. Therefore, several methods have been established to protect such pipelines from hydrodynamic forces. The objective of this work is to investigate the performance of two different protection methods using computational fluid dynamics. A second-order accurate upwind finite volume computational fluid dynamics model was used to simulate isotropic turbulent flow around a subsea pipeline located on flat seabed. A comparison between four turbulence models revealed that both Menter’s shear stress transport k − ω and the standard k − ω models yield the best agreement with experimental measurements. Pipeline trenching and double-barrier protection methods were simulated with different geometrical characteristics. A comparison between those two methods was conducted and discussed. It is found that at small aspect ratios, the double-barrier method prevails over trenching in terms of its ability to isolate the pipe from the main current. While at large aspect ratio, trenching provides near-zero pressure coefficient along the pipe wall, which demonstrate its prevalence in protecting the pipeline.


    Access

    Access via TIB

    Check availability in my library

    Order at Subito €


    Export, share and cite



    Title :

    Numerical simulation of the flow around a subsea pipeline with different protection methods




    Publication date :

    2017




    Type of media :

    Article (Journal)


    Type of material :

    Print


    Language :

    English



    Classification :

    BKL:    50.92 / 50.92 Meerestechnik / 56.30 Wasserbau / 55.40 / 55.40 Schiffstechnik, Schiffbau / 56.30



    Numerical simulation of the flow around a subsea pipeline with different protection methods

    Saber, Mohamed / Saqr, Khalid M / Hassan, Amr A et al. | SAGE Publications | 2017



    Subsea pipeline gets welded branch without halting flow

    West, A. / Hutt, G. / Starsmore, R. | Tema Archive | 1995


    PROTECTING SYSTEM OF SUBSEA PIPELINE

    European Patent Office | 2022

    Free access

    Study improves subsea pipeline preheating

    Yuan, Zongming / Wang, Yong / Xie, Ying et al. | Tema Archive | 2014