A method is presented which finds Mars parking orbits which allow tangential periapsis burns at both arrival and departure. This method accounts for the actual geometry at both arrival and departure between the hyperbolic asymptotes and the orbital plane, along with the precession effects caused by the oblateness of Mars. Thus, realistic Delta-V values (and hence initial low-earth orbit masses) are obtained for these orbits. The results obtained from the present method compare very well with a trajectory integration program while only requiring CPU times of about one minute. Therefore, due to the computational efficiency and accuracy, the present method would be an ideal tool to use in preliminary mission design, since it provides the opportunity to incorporate realistic Mars parking orbits effects.


    Access

    Access via TIB

    Check availability in my library


    Export, share and cite



    Title :

    Determining Mars parking orbits which ensure tangential periapsis burns at arrival and departure


    Contributors:

    Conference:

    1992 AIAA/AAS Astrodynamics Conference ; 1992 ; Hilton Head Island, SC, United States


    Publication date :

    1992-01-01


    Type of media :

    Conference paper


    Type of material :

    No indication


    Language :

    English


    Keywords :