AbstractIn this study, the distributed six degree-of-freedom (6-DOF) coordinated control of spacecraft formation flying in low earth orbit (LEO) has been investigated. For this purpose, an accurate coupled translational and attitude relative dynamics model of the spacecraft with respect to the reference orbit (virtual leader) is presented by considering the most effective perturbation acceleration forces on LEO satellites, i.e. the second zonal harmonic and the atmospheric drag. Subsequently, the 6-DOF coordinated control of spacecraft in formation is studied. During the mission, the spacecraft communicate with each other through a switching network topology in which the weights of its graph Laplacian matrix change adaptively based on a distance-based connectivity function between neighboring agents. Because some of the dynamical system parameters such as spacecraft masses and moments of inertia may vary with time, an adaptive law is developed to estimate the parameter values during the mission. Furthermore, for the case that there is no knowledge of the unknown and time-varying parameters of the system, a robust controller has been developed. It is proved that the stability of the closed-loop system coupled with adaptation in network topology structure and optimality and robustness in control is guaranteed by the robust contraction analysis as an incremental stability method for multiple synchronized systems. The simulation results show the effectiveness of each control method in the presence of uncertainties and parameter variations. The adaptive and robust controllers show their superiority in reducing the state error integral as well as decreasing the control effort and settling time.

    HighlightsA coupled translational and attitude relative dynamics of several spacecraft is used.The Earth second zonal harmonic and aerodynamic drag are modeled.Adaptive switching network topology based on distance-based connectivity is proposed.A distributed optimal control method is suggested based on network topology.Robust and adaptive control methods are developed in the case of uncertainties.


    Access

    Check access

    Check availability in my library

    Order at Subito €


    Export, share and cite



    Title :

    Robust distributed control of spacecraft formation flying with adaptive network topology


    Contributors:

    Published in:

    Acta Astronautica ; 136 ; 281-296


    Publication date :

    2017-03-02


    Size :

    16 pages




    Type of media :

    Article (Journal)


    Type of material :

    Electronic Resource


    Language :

    English




    Robust Control of Spacecraft Formation Flying

    Hu, Yan-Ru | Online Contents | 2007



    Robust Adaptive Sliding Mode Attitude Tracking Control for Spacecraft Formation Flying

    Zhang, Weitai / Yuan, Changqing / Cong, Fuzhong et al. | Tema Archive | 2011