Endovascular catheters are necessary for state-of-the-art treatments of life-threatening and time-critical diseases like strokes and heart attacks. Navigating them through the vascular tree is a highly challenging task. We present our preliminary results for the autonomous control of a guidewire through a vessel phantom with the help of Deep Reinforcement Learning. We trained Deep-Q-Network (DQN) and Deep Deterministic Policy Gradient (DDPG) agents on a simulated vessel phantom and evaluated the training performance. We also investigated the effect of the two enhancements Hindsight Experience Replay (HER) and Human Demonstration (HD) on the training speed of our agents. The results show that the agents are capable of learning to navigate a guidewire from a random start point in the vessel phantom to a random goal. This is achieved with an average success rate of 86.5% for DQN and 89.6% for DDPG. The use of HER and HD significantly increases the training speed. The results are promising and future research should address more complex vessel phantoms and the use of a combination of guidewire and catheter.


    Access

    Download


    Export, share and cite



    Title :

    Deep Reinforcement Learning for the Navigation of Neurovascular Catheters



    Publication date :

    2019-01-01


    Remarks:

    Fraunhofer IPA



    Type of media :

    Article (Journal)


    Type of material :

    Electronic Resource


    Language :

    English



    Classification :

    DDC:    629



    Automatic Navigation Using Deep Reinforcement Learning

    BALAKRISHNAN KAUSHIK / NARAYANAN PRAVEEN / LAKEHAL-AYAT MOHSEN | European Patent Office | 2019

    Free access

    Automatic navigation using deep reinforcement learning

    BALAKRISHNAN KAUSHIK / NARAYANAN PRAVEEN / LAKEHAL-AYAT MOHSEN | European Patent Office | 2023

    Free access

    Autonomous vehicle navigation with deep reinforcement learning

    Cabañeros López, Àlex | BASE | 2019

    Free access

    Deep Reinforcement Learning for Mobile Robot Navigation

    Gromniak, Martin / Stenzel, Jonas | BASE | 2019

    Free access

    AUTOMATISCHE NAVIGATION UNTER VERWENDUNG VON DEEP REINFORCEMENT LEARNING

    BALAKRISHNAN KAUSHIK / NARAYANAN PRAVEEN / LAKEHAL-AYAT MOHSEN | European Patent Office | 2019

    Free access