The ionic polymer-metal composite (IPMC) for flexible hydrodynamic propulsor blades can provide many new opportunities in the naval platforms, especially in developing robotic unmanned vehicles for both surveillance and combat. IPMC materials are quietly operational since they have no vibration causing components, i.e. gears, motors, shafts, and etc. For small autonomous underwater vehicles (AUV), these features are truly attractive due to limited space. Also, IPMCs are friendly to solid-state electronics with digital programming capabilities. Active control is thus possible. Another advantage of these materials should be recognized from the fact that they can be operational in a self-oscillatory manner. There are several issues that still need to be addressed such as propulsor design, testing, robotic control as well as theoretical modeling of the appropriate design. In this effort, IPMC is investigated for propulsor blades applications in NaCl solution and a propulsor model with a robust control scheme is explored. An analytical model of a segmented IPMC propulsor was formulated to be used as a building block for furthering the model to adequately accommodate the relaxation behavior of IPMCs and for describing the dynamics of the flexible IPMC bending actuator.


    Access

    Access via TIB

    Check availability in my library

    Order at Subito €


    Export, share and cite



    Title :

    Operation of ionic polymer-metal composites in water


    Contributors:
    Yim, W. (author) / Kim, K.J. (author) / Paquette, J.W. (author) / Kim, Doyeon (author)


    Publication date :

    2005


    Size :

    12 Seiten, 38 Quellen




    Type of media :

    Conference paper


    Type of material :

    Print


    Language :

    English




    Ionic polymer-metal composites for underwater operation

    Kim, Kwang-J. / Yim, Woosoon / Paquette, Jason W. et al. | Tema Archive | 2007


    Simulation-optimisation in modelling ionic polymer-metal composites actuators

    Dellino,G. / Lino,P. / Meloni,C. et al. | Automotive engineering | 2012


    The renewable energy generation buoyant with ionic polymer-metal composites

    CHOI JUN HO | European Patent Office | 2021

    Free access


    Free-Locomotion of Underwater Vehicles Actuated by Ionic Polymer Metal Composites

    Aureli, Matteo / Kopman, Vladislav / Porfiri, Maurizio | Tema Archive | 2010