The thermal fatigue cracking of asphalt concrete waterproofing layer (ACWL) in high-speed railway is mainly caused by the daily reduced temperature effect. In this study, numerical and experimental investigations on this effect were respectively conducted through the determination of surface temperature field, finite element modelling (FEM), and experiments using the customized overlay test (OT). The results indicated the thermal condition in Northern China was more severe for ACWL compared with that of other regions. The stress concentration effect on ACWL surface was mainly attributed to the temperature variation, average temperature, and viscoelastic behaviour of asphalt concrete. In addition, the OT results indicated the internal damage might happen in ACWL without obvious surface feature. Finally, the OT was in consistent with FEM analysis regarding internal stress distribution and fatigue characteristics, and thus could be used as a feasible test method to evaluate the thermal fatigue of ACWL.

    A set of 10-year weather data covering major cities in China was used to calculate surface temperature field change on ACWL in high-speed railway system.

    A 3-dimensional thermo-mechanical coupled FEM model was established and verified to investigate the daily reduced temperature effect on high-speed railway ACWL.

    The customized overlay tester was innovatively employed to simulate thermal load characteristics of the reduced temperature effect.


    Access

    Check access

    Check availability in my library

    Order at Subito €


    Export, share and cite



    Title :

    Numerical and experimental investigation of reduced temperature effect on asphalt concrete waterproofing layer in high-speed railway


    Contributors:
    Xiao, Xin (author) / Li, Jin (author) / Wang, Chenyu (author) / Cai, Degou (author) / Lou, Liangwei (author) / Shi, Yuefeng (author) / Xiao, Feipeng (author)

    Published in:

    Publication date :

    2023-05-04


    Size :

    17 pages




    Type of media :

    Article (Journal)


    Type of material :

    Electronic Resource


    Language :

    Unknown




    Asphalt Concrete Layer to Support Track Slab of High-Speed Railway

    Yang, Enhui / Wang, Kelvin C. P. / Luo, Qiang et al. | Transportation Research Record | 2019


    Impulse radar evaluation of concrete, asphalt and waterproofing membrane

    Chung, T. / Carter, C.R. / Masliwec, T. et al. | IEEE | 1994



    Waterproofing railway ties to preserve them

    Wicksteed, H.K. | Engineering Index Backfile | 1919


    High-temperature waterproofing for tiles

    Bahnsen, E. B. / Izu, Y. D. | NTRS | 1978