The National Institute of Standards and Technology (NIST) Intelligent Control of Mobility Systems (ICMS) Program provides architectures and interface standards, performance test methods and data, and infrastructure technology needed by the U.S. manufacturing industry and government agencies in developing and applying intelligent control technology to mobility systems to reduce cost, improve safety, and save lives. The ICMS Program is made up of several areas including: defense, transportation, and industry projects, among others. Each of these projects provides unique capabilities that foster technology transfer across mobility projects and to outside government, industry and academia for use on a variety of applications. A common theme among these projects is autonomy and the Four Dimensional (3D + time)/Real-time Control System (4D/RCS) standard control architecture for intelligent systems that has been applied to these projects. This chapter will briefly describe recent project advances within the ICMS Program including: goals, background accomplishments, current capabilities, and technology transfer that has or is planned to occur. Several projects within the ICMS Program have developed the 4D/RCS into a modular architecture for intelligent mobility systems, including: an Army Research Laboratory (ARL) Project currently studying onroad autonomous vehicle control, a Defense Advanced Research Project Agency (DARPA) Learning Applied to Ground Robots (LAGR) Project studying learning within the 4D/RCS architecture with road following application, and an Intelligent Systems Ontology project that develops the description of intelligent vehicle behaviors. Within the standards and performance measurements area of the ICMS program, a Transportation Project is studying components of intelligent mobility systems that are finding their way into commercial crash warning systems (CWS). In addition, the ALFUS (Autonomy Levels For Unmanned Systems) project determines the needs for metrics and standard definitions for autonomy levels of unmanned systems. And a JAUS (Joint Architecture for Unmanned Systems) project is working to set a standard for interoperability between components of unmanned robotic vehicle systems. Testbeds and frameworks underway at NIST include the PRIDE (Prediction in Dynamic Environments) framework to provide probabilistic predictions of a moving object's future position to an autonomous vehicle's planning system, as well as the USARSim/MOAST (Urban Search and Rescue Simulation/Mobility Open Architecture Simulation and Tools) framework that is being developed to provide a comprehensive set of open source tools for the development and evaluation of autonomous agent systems. A NIST Industrial Autonomous Vehicles (IAV) Project provides technology transfer from the defense and transportation projects directly to industry through collaborations with automated guided vehicles manufacturers by researching 4D/RCS control applications to automated guided vehicles inside facilities. These projects are each briefly described in this Chapter followed by Conclusions and continuing work.


    Access

    Check access

    Check availability in my library

    Order at Subito €


    Export, share and cite



    Title :

    Intelligent Control of Mobility Systems


    Contributors:


    Publication date :

    2008-01-01


    Size :

    38 pages





    Type of media :

    Article/Chapter (Book)


    Type of material :

    Electronic Resource


    Language :

    English




    Intelligent transport systems for everyone's mobility

    Mine, Tsunenori ;Fukuda, Akira ;Ishida, Shigemi | SLUB | 2019


    Intelligent Transport Systems for Everyone’s Mobility

    Mine, Tsunenori ;Fukuda, Akira ;Ishida, Shigemi | SLUB | 2019



    Intelligent mobility enhancement system

    Kondo, Y. | Online Contents | 2000


    Intelligent mobility enhancement system

    Kondo,Y. / Shirai,H. / Yasuda,T. et al. | Automotive engineering | 2000