The performance, life cycle cost, and safety of electric and hybrid electric vehicles (EVs and HEVs) depend strongly on their energy storage system. Advanced batteries such as lithium-ion (Li-ion) polymer batteries are quite viable options for storing energy in EVs and HEVs. In addition, thermal management is essential for achieving the desired performance and life cycle from a particular battery. Therefore, to design a thermal management system, a designer must study the thermal characteristics of batteries. The thermal characteristics that are needed include the surface temperature distribution, heat flux, and the heat generation from batteries under various charge/discharge profiles. Therefore, in the first part of the research, surface temperature distribution from a lithium-ion pouch cell (20Ah capacity) is studied under different discharge rates of 1C, 2C, 3C, and 4C. In the second part of the research, the total heat generation from a particular battery is obtained under different discharge rates (1C, 2C, 3C, and 4C) and different boundary conditions (cooling bath temperature of 5°C, 15°C, 25°C, and 35°C). In the third part of the research, the heat flux profile is studied at three different locations on the top surface of the pouch cell (first, near the cathode; second, near the anode; and third, at the center of the cell along the height of the cell) using heat flux sensors. In the fourth part of the research, thermal images from a lithium-ion pouch cell are obtained at different discharge rates to qualitatively evaluate the thermal behaviour and temperature distribution. A “FLIR System” Therma CAM model S60 IR camera is used to obtain thermal images.


    Access

    Check access

    Check availability in my library

    Order at Subito €


    Export, share and cite



    Title :

    Thermal Management of Lithium-Ion Pouch Cell with Indirect Liquid Cooling using Dual Cold Plates Approach


    Additional title:

    Sae Int. J. Alt. Power


    Contributors:

    Conference:

    SAE 2015 World Congress & Exhibition ; 2015



    Publication date :

    2015-04-14


    Size :

    15 pages




    Type of media :

    Conference paper


    Type of material :

    Print


    Language :

    English