Direct numerical simulations of the flow past a low-aspect-ratio revolving wing are performed. The wing undergoes an impulsively started 180 deg revolution about a vertical axis at angles of attack 15, 30, and 45 deg and chord-based Reynolds number 1000. The root cutout is varied at a fixed wing radius, R=4 chords, and the effects on the flow structure and aerodynamic performance of the wing are evaluated. It is shown that an optimum in aerodynamic efficiency exists at low root cutout. Results suggest that this optimum is due to the competition between low Reynolds number effects at the wing root and root vortex effects. In addition, it is shown that a large root cutout can inhibit leading-edge vortex burst that occurs at high angles of attack. However, despite the associated recovery in pressure forces near the wing tip, this inhibition has no significant impact on aerodynamic performance.


    Access

    Access via TIB

    Check availability in my library

    Order at Subito €


    Export, share and cite



    Title :

    Root Cutout Effects on the Aerodynamics of a Low-Aspect-Ratio Revolving Wing


    Contributors:

    Published in:

    Publication date :

    2017




    Type of media :

    Article (Journal)


    Type of material :

    Print


    Language :

    English



    Classification :

    BKL:    55.50 Luftfahrzeugtechnik / 55.60 Raumfahrttechnik / 55.60 / 50.93 / 55.50 / 50.93 Weltraumforschung
    Local classification TIB:    770/7040





    Aerodynamics of a Flapping-Perturbed Revolving Wing

    Wu, Jianghao / Chen, Long / Zhou, Chao et al. | AIAA | 2018


    GROUND VIBRATION TESTING OF A HIGH ASPECT RATIO WING WITH REVOLVING CLAMP

    Dessena, G. / Ignatyev, D. / Whidborne, J. et al. | British Library Conference Proceedings | 2022


    Low-aspect-ratio wing aerodynamics at low Reynolds numbers

    Torres, Gabriel E. / Mueller, Thomas J. | Tema Archive | 2004