Lean premixed combustion promotes the occurrence of thermoacoustic phenomena in gas turbine combustors. One mechanism that contributes to the flame-acoustic interaction is entropy noise. Fluctuations of the equivalence ratio in the mixing section cause the generation of hot spots in the flame. These so called entropy waves are convectively transported to the first stage of the turbine and generate acoustic waves that travel back to the flame; a thermoacoustic loop is closed. However, due to the lack of experimental tools, a detailed investigation of entropy waves in gas turbine combustion systems has not been possible up to now. This work presents an acoustic time-of-flight based temperature measurement method which allows the detection of temperature fluctuations in the relevant frequency range. A narrow acoustic pulse is generated with an electric spark discharge close to the combustor wall. The acoustic response is measured at the same axial location with an array of microphones circumferentially distributed around the combustion chamber. The delay in the pulse arrival times corresponds to the line-integrated inverse speed of sound. For the measurement of entropy waves in an atmospheric combustion test rig, fuel is periodically injected into the mixing tube of a premixed combustor. The subsequently generated entropy waves are detected for different forcing frequencies of the fuel injection and for different mean flow velocities in the combustor. The amplitude decay and phase lag of the entropy waves adheres well to a Strouhal number scaling for different mean flow velocities.


    Access

    Access via TIB

    Check availability in my library

    Order at Subito €


    Export, share and cite



    Title :

    An Acoustic Time-of-Flight Approach for Unsteady Temperature Measurements: Characterization of Entropy Waves in a Model Gas Turbine Combustor




    Publication date :

    2016




    Type of media :

    Article (Journal)


    Type of material :

    Print


    Language :

    English



    Classification :

    BKL:    52.30 / 52.52 / 52.52 Thermische Energieerzeugung, Wärmetechnik / 52.30 Strömungskraftmaschinen, Turbomaschinen