It is necessary to understand how film cooling both reduces the adiabatic wall temperature and influences the heat transfer coefficient in order to predict its benefit to a gas turbine hot gas path component. Although a great number of studies have considered steady film-cooling flows, unsteadiness has only recently been considered. Unsteadiness in the freestream flow or the coolant flow can cause fluctuations in both the adiabatic effectiveness and heat transfer coefficient, the dynamics of which have been difficult to measure. In previous studies, only time-averaged effects have been measured. The present study has determined time-resolved η and h waveforms using a novel inverse heat transfer methodology. Unsteady interactions between η and h were examined near a coolant hole on the leading-edge region of a circular cylinder simulating the leading edge of a turbine blade. The coolant plume is shown to shift back and forth as the jet's momentum fluctuates, resulting in an increased spread of coolant coverage but less than ideal performance at any instant in time. The phase behavior of the η and h waveforms was also examined; in some locations, they fluctuate in phase, and in others, they fluctuate out of phase, again impacting the overall film-cooling coverage from the steady-state value. This is the first time that time-resolved waveforms for h and η have been determined experimentally.


    Access

    Access via TIB

    Check availability in my library

    Order at Subito €


    Export, share and cite



    Title :

    Waveforms of Time-Resolved Film-Cooling Parameters on a Leading-Edge Model


    Contributors:

    Published in:

    Publication date :

    2015




    Type of media :

    Article (Journal)


    Type of material :

    Print


    Language :

    English



    Classification :

    BKL:    55.50 Luftfahrzeugtechnik / 55.50
    Local classification TIB:    770/7040



    Waveforms of Time-Resolved Film-Cooling Parameters on a Leading-Edge Model

    Rutledge, James L. / Polanka, Marc D. | AIAA | 2014



    Highly Resolved Distribution of Adiabatic Film Cooling Effectiveness for Turbine Leading Edge Film Cooling

    Haslinger, W. / Hennecke, D. / International Society for Air Breathing Engines; United States Committee | British Library Conference Proceedings | 1997


    Effect of Pulsed Film Cooling on Leading Edge Film Effectiveness

    El-Gabry, Lamyaa A. | Online Contents | 2012


    Leading-Edge Injection for Film Cooling of Turbine Vanes

    Gary J. Hanus / Mel R. L'Ecuyert | AIAA | 1977