To support sustainable infrastructure on the Moon, NASA needs to leverage lunar resources for in-situ processing and construction. NASA’s Regolith Advanced Surface Systems Operations Robot (RASSOR) is principally designed to mine and deliver regolith for these tasks. To reliably perform these operations on the lunar surface, RASSOR's sensors and control systems need to be robust and maximize information extracted from a reduced sensor payload. Herein, we present our findings from the Intelligent Capabilities Enhanced RASSOR project. We created reduced-order simulation environments in which we applied reinforcement learning algorithms to learn autonomous trenching controllers and produced state estimation architectures. We developed two simulations: a 2D excavation simulation used to facilitate parameter selection, and a 3D simulation developed using a game physics engine to simulate simplified soil interactions and incorporate robotic agents parameterized by dynamic models. Within these simulations, we learned autonomous excavation routines that exceed excavation efficiency measures as compared against RASSOR's existing control and teleoperation-based methods.


    Access

    Access via TIB

    Check availability in my library


    Export, share and cite



    Title :

    Towards Autonomous Lunar Resource Excavation via Deep Reinforcement Learning



    Conference:

    ASCEND Conference ; 2021 ; Online / Las Vegas, US


    Type of media :

    Miscellaneous


    Type of material :

    No indication


    Language :

    English




    Towards Autonomous Lunar Resource Excavation via Deep Reinforcement Learning

    J. M. Cloud / R. J. Nieves / A. K. Duke et al. | NTIS | 2021


    Towards Autonomous Lunar Resource Excavation via Deep Reinforcement Learning

    J. M. Cloud / R. J. Nieves / A. K. Duke et al. | NTIS | 2021


    Towards Autonomous Lunar Resource Excavation via Deep Reinforcement Learning

    Cloud, Joseph M. / Nieves, Rolando J. / Duke, Adam K. et al. | AIAA | 2021


    Towards Autonomous Lunar Resource Excavation via Deep Reinforcement Learning

    Joseph M. Cloud / Rolando J. Nieves / Adam K. Duke et al. | NTRS


    TOWARDS AUTONOMOUS LUNAR RESOURCE EXCAVATION VIA DEEP REINFORCEMENT LEARNING

    Cloud, Joseph M. / Nieves, Rolando J. / Duke, Adam K. et al. | TIBKAT | 2021