Abstract Flapping-wing micro air vehicle (FWMAV) is an attractive idea for Mars exploration because of its high capability in a thin atmosphere. The biggest challenge for its development is an appropriate understanding of a flapping flight with flexible wings, which is significantly complicated because flexible flapping wings can undergo large-scale deformations due to the effects of wing inertia and the aerodynamic forces exerted by the surrounding atmosphere. Fluid–structure interaction (FSI) analysis is a powerful tool for accurate investigations, but it usually has a very high computational cost, making it challenging to perform necessary parametric studies for practical designing. An efficient FSI analysis method is required. On Mars, whose atmospheric density is around 1% that of Earth, aerodynamic forces have a relatively small influence on wing deformation and may even be negligible in some cases. We thus investigate the relative contributions of the inertial force of a flapping wing and the aerodynamic forces exerted by the surrounding Martian atmosphere using a two-way coupled FSI simulation, and identify the conditions under which the aerodynamic forces are negligible. Then, we develop a computationally efficient one-way coupled FSI analysis system based on the interface-capturing method to design a flexible flapping wing for Mars exploration. Under the obtained conditions, we perform parametric studies on hovering flight with flexible flapping wings in the Martian environment with multiple aerodynamic parameters, various kinematic parameters, and material properties of the wing. We conclude that an FWMAV with a payload of around 5 g can fly for more than 1 min for the maximum density of the Martian atmosphere.

    Highlights Inertial and aerodynamic force was analyzed using a two-way coupled FSI analysis. A one-way coupled FSI analysis system was developed for efficient parametric study. We found a design solution that can fly for more than 1 min with about 5 g payloads.


    Access

    Check access

    Check availability in my library

    Order at Subito €


    Export, share and cite



    Title :

    Fluid–structure interaction analysis of flexible flapping wing in the Martian environment


    Contributors:

    Published in:

    Acta Astronautica ; 193 ; 138-151


    Publication date :

    2022-01-03


    Size :

    14 pages




    Type of media :

    Article (Journal)


    Type of material :

    Electronic Resource


    Language :

    English




    Noise Analysis of Insect-Scale Flapping Wing with Fluid Structure Interaction

    Guo, Yueyang / Yang, Wenqing / Dong, Yuanbo et al. | Springer Verlag | 2024


    COMPUTATIONAL FLUID-STRUCTURE INTERACTIONS OF A 3D FLEXIBLE FLAPPING WING

    Guo, Y. / Yang, W. / Dong, Y. et al. | British Library Conference Proceedings | 2021


    Dynamic Fluid-Structure Coupling Method of Flexible Flapping Wing for MAV

    Yang, Wenqing / Song, Bifeng / Wang, Liguang et al. | ASCE | 2015



    Novel slender flexible flapping wing

    HOU DAN / LIU WENZHONG / XIAO XUAN et al. | European Patent Office | 2021

    Free access