Abstract In this paper the influence of large-scale decreasing and increasing gradients of the density of magnetized plasma on the relaxation process of a continuously injected relativistic electron beam with an energy of 660 keV ( v b = 0.9 c ) and a pitch-angle distribution is studied using particle-in-cell numerical simulations. It is found that for the selected parameters in the case of a smoothly decreasing gradient and in a homogeneous plasma the formation of spatially limited plasma oscillations of large amplitude occurs. In such cases, modulation instability develops and a long-wave longitudinal modulation of the ion density is formed. In addition, the large amplitude of plasma waves accelerates plasma electrons to energies on the order of the beam energy. In the case of increasing and sharply decreasing gradients, a significant decrease in the amplitude of plasma oscillations and the formation of a turbulent ion density spectrum are observed. The possibility of acceleration of beam electrons to energies more than 2 times higher than the initial energy of the beam particles is also demonstrated. This process takes place not only during beam propagation in growing plasma density, but also in homogeneous plasma due to interaction of beam particles with plasma oscillations of large amplitude.


    Access

    Check access

    Check availability in my library

    Order at Subito €


    Export, share and cite



    Title :

    Numerical simulations of a continuously injected relativistic electron beam relaxation into a plasma with large-scale density gradients


    Contributors:

    Published in:

    Advances in Space Research ; 71 , 4 ; 1948-1961


    Publication date :

    2022-08-12


    Size :

    14 pages




    Type of media :

    Article (Journal)


    Type of material :

    Electronic Resource


    Language :

    English




    Stability of an electron beam injected into space

    Jaggi, R. Krishan | TIBKAT | 1970



    Predicting the L-Position of the Storm-Injected Relativistic Electron Belt

    Tverskaya, L. V. / Pavlov, N. N. / Blake, J. B. et al. | British Library Conference Proceedings | 2003


    Predicting the L-position of the storm-injected relativistic electron belt

    Tverskaya, L.V. / Pavlov, N.N. / Blake, J.B. et al. | Elsevier | 2002


    Numerical Benchmark for High-Reynolds-Number Supercritical Flows with Large Density Gradients

    Ruiz, A. M. / Lacaze, G. / Oefelein, J. C. et al. | AIAA | 2015