Abstract The enhanced distributed channel access (EDCA) mechanism enables IEEE 802.11p to accommodate differential quality of service (QoS) levels in vehicle-to-vehicle (V2V) communications, through four access categories (ACs). This paper presents multi-dimensional discrete-time Markov chain (DTMC) based model to study the effect of parallel operation of the ACs on the medium access control (MAC) layer performance of ITS-G5 IEEE 802.11p. The overall model consists of four queue models with their respective traffic generators, which are appropriately linked with the DTMCs modeling the operation of each AC. Closed-form solutions for the steady-state probabilities of the models are obtained, which are then utilized to derive expressions for key performance indicators at the MAC layer. An application for a highway scenario is presented to draw insights on the performance. The results show how the performance measures vary among ACs according to their priority levels, and emphasize the importance of analytical modeling of the parallel operation of all four ACs.


    Access

    Download


    Export, share and cite



    Title :

    The effect of multiple access categories on the MAC layer performance of IEEE 802.11p



    Publication date :

    2020-01-01


    Type of media :

    Article (Journal)


    Type of material :

    Electronic Resource


    Language :

    English



    Classification :

    DDC:    629




    IEEE 802.11p performance evaluation and protocol enhancement

    Yi Wang, / Ahmed, Akram / Krishnamachari, Bhaskar et al. | IEEE | 2008


    IEEE 802.11p unicast considered harmful

    Klingler, Florian / Dressler, Falko / Sommer, Christoph | IEEE | 2015


    Empirical IEEE 802.11p performance evaluation on test tracks

    Demmel, Sebastien / Lambert, Alain / Gruyer, Dominique et al. | IEEE | 2012


    IEEE 802.11p Performance Evaluation: Simulations vs. Real Experiments

    Almeida, Thales T. / de C. Gomes, Lucas / Ortiz, Fernando M. et al. | IEEE | 2018