Purpose: The purpose of this paper is to describe the implementation of a Fleet Management System (FMS) that plans and controls the execution of logistics tasks by a set of mobile robots in a real-world hospital environment. The FMS is developed upon an architecture that hosts a routing engine, a task scheduler, an Endorse Broker, a controller and a backend Application Programming Interface (API). The routing engine handles the geo-referenced data and the calculation of routes; the task scheduler implements algorithms to solve the task allocation problem and the trolley loading problem using Integer Linear Programming (ILP) model and a Genetic Algorithm (GA) depending on the problem size. The Endorse Broker provides a messaging system to exchange information with the robotic fleet, while the controller implements the control rules to ensure the execution of the work plan. Finally, the Backend API exposes some FMS to external systems. Design/methodology/approach: The first part of the paper, focuses on the dynamic path planning problem of a set of mobile robots in indoor spaces such as hospitals, laboratories and shopping centres. A review of algorithms developed in the literature, to address dynamic path planning, is carried out; and an analysis of the applications of such algorithms in mobile robots that operate in real in-door spaces is performed. The second part of the paper focuses on the description of the FMS, which consists of five integrated tools to support the multi-robot dynamic path planning and the fleet management. Findings: The literature review, carried out in the context of path planning problem of multiple mobile robots in in-door spaces, has posed great challenges due to the environment characteristics in which robots move. The developed FMS for mobile robots in healthcare environments has resulted on a tool that enables to: (i) interpret of geo-referenced data; (ii) calculate and recalculate dynamic path plans and task execution plans, through the implementation of advanced algorithms that ...


    Access

    Download


    Export, share and cite



    Title :

    Fleet management system for mobile robots in healthcare environments


    Contributors:

    Publication date :

    2021-01-01



    Type of media :

    Article (Journal)


    Type of material :

    Electronic Resource


    Language :

    English



    Classification :

    DDC:    629 / 650





    Performance optimisation of mobile robots in dynamic environments

    Zhu, Wenkai. / 朱文凯. | BASE

    Free access

    FLEET MANAGEMENT SYSTEM

    SCHNELL WILLIAM / RADUE MARTIN / ANDREN TRAVIS et al. | European Patent Office | 2021

    Free access

    FLEET MANAGEMENT SYSTEM

    WELLMAN TIMOTHY A / WINNER DEAN E | European Patent Office | 2020

    Free access

    Fleet management system

    WELLMAN TIMOTHY A | European Patent Office | 2015

    Free access