This paper deals with the LUT-less sensorless control of synchronous reluctance (SyR) machines at zero and low speed, where LUT-less stands for avoiding the use of flux-map look-up tables (LUTs) or other pre-determined machine parameters. The new signal-injection based control scheme called the Locus of Incremental Saliency ratio Tracking (LIST) is presented, where a pulsating high-frequency voltage component is used for position tracking and a second rotating signal-injection is dedicated to on-line estimating the incremental saliency ratio. A trajectory of constant incremental saliency ratio is used for torque regulation, resulting in stable control at all operating conditions, including overload. This despite the effect of cross-saturation, which is known to introduce position error and harm the control stability progressively with the load. The proposed scheme is validated experimentally on a 1.1 kW SyR machine test-bench. Alternative LUT-less torque control laws are investigated, and their stability limits put in evidence using convergence analysis and experiments.


    Access

    Download


    Export, share and cite



    Title :

    LUT-less Sensorless Control of Synchronous Reluctance Machines using the Locus of Incremental Saliency Ratio Tracking (LIST)



    Publication date :

    2022-01-01



    Type of media :

    Article (Journal)


    Type of material :

    Electronic Resource


    Language :

    English



    Classification :

    DDC:    629