Electroaerodynamic thrust has been proposed as a means for aircraft propulsion, potentially enabling near-silent and solid-state flight. Studies to date have experimentally quantified electroaerodynamic thrust density and thrust-to-power performance, determining that electroaerodynamic propulsion may be viable for use on fixed-wing aircraft. These studies, however, have only assessed electroaerodynamic propulsion devices at ground-level atmospheric pressure and in a static laboratory frame with zero flight velocity. This analysis is the first to analytically quantify the performance of a simplified one-dimensional electroaerodynamic propulsion system as a function of altitude and flight velocity. It is found that the thrust to power of a geometrically fixed thruster will decrease with altitude due to the decrease in pressure. Between 0 and 25 km, this decrease is predicted to be 80 % . This loss in thrust-to-power performance, however, can be offset by geometrically scaling the size of the thruster with altitude at the cost of decreased thrust density. The thrust to power is also expected to decrease with increasing forward velocity of an electroaerodynamically propelled aircraft due to an increase in the effective mobility of ions generated by the propulsion system. Neglecting losses due to drag, however, yields an increase in overall efficiency with increasing flight speed. When compared to an ideal propeller and high-bypass-ratio turbofan, the electroaerodynamic thruster performance shows comparable thrust-to-power dependence on altitude and flight speed.


    Access

    Check access

    Check availability in my library

    Order at Subito €


    Export, share and cite



    Title :

    Electroaerodynamic Thruster Performance as a Function of Altitude and Flight Speed


    Contributors:

    Published in:

    AIAA Journal ; 56 , 3 ; 1105-1117


    Publication date :

    2017-12-14


    Size :

    13 pages




    Type of media :

    Article (Journal)


    Type of material :

    Electronic Resource


    Language :

    English




    ELECTROAERODYNAMIC DEVICES

    BARRETT STEVEN / XU HAOFENG / HE YIOU | European Patent Office | 2023

    Free access

    ELECTROAERODYNAMIC DEVICES

    BARRETT STEVEN / XU HAOFENG / HE YIOU | European Patent Office | 2020

    Free access

    ELECTROAERODYNAMIC DEVICES

    BARRETT STEVEN / XU HAOFENG / HE YIOU | European Patent Office | 2020

    Free access

    DUCTED ELECTROAERODYNAMIC THRUSTERS

    BARRETT STEVEN / XU HAOFENG / BROWN ARTHUR et al. | European Patent Office | 2023

    Free access

    SURFACE-INTEGRATED ELECTROAERODYNAMIC THRUSTERS

    BARRETT STEVEN / XU HAOFENG / BROWN ARTHUR et al. | European Patent Office | 2023

    Free access