As the costs of fuel and maintenance increase and regulations on weight and environmental impact tighten, there is an increasing push to transition onboard aircraft networks to wireless, reducing weight, fuel, maintenance time, and pollution. A candidate short-range wireless network for aircraft onboard communications is outlined using the common ZigBee protocol and privacy-preserving search implemented as a secure publish/subscribe system using specially coded metadata. Formally specifying safety and security properties and modeling the network in New e(X)tensible Model Verifier enable verification and fault analysis via model checking and lay the groundwork for future certification avenues. Experiments formally analyzing the candidate wireless network are reported, showing overhead and availability for encrypted and fault-tolerant communications. A formal model is proposed, which allows system designers to estimate communication failure rates and directly trade off fault tolerance for bandwidth, while preserving communication security.


    Access

    Check access

    Check availability in my library

    Order at Subito €


    Export, share and cite



    Title :

    Formal Framework for Safety, Security, and Availability of Aircraft Communication Networks


    Contributors:

    Published in:

    Publication date :

    2020-05-26


    Size :

    14 pages




    Type of media :

    Article (Journal)


    Type of material :

    Electronic Resource


    Language :

    English





    A Case Study in Safety, Security, and Availability of Wireless-Enabled Aircraft Communication Networks (AIAA 2017-3112)

    Dureja, Rohit / Rozier, Eric W. / Rozier, Kristin Y. | British Library Conference Proceedings | 2017



    Predicting Aircraft Availability

    M. A. Chapa | NTIS | 2013