Adjoint-free methods are required in aerodynamic shape design optimization if an adjoint solver is unavailable. However, their performance is highly criticized in high-dimensional problems like wing shape design optimization. This work proposes an adjoint-free optimization method using deep-learning techniques to address the issue. A deep-learning-based optimal sampling method is developed to generate various wing shapes subject to both geometric validity and feasibility constraints. To address the curse of dimensionality in adjoint-free optimization, a compact wing shape parameterization method is presented by deriving global wing mode shapes from the sample wings. The proposed method is compared with the adjoint-based optimization method in both single-point and multipoint design of the Common Research Model wing. The proposed adjoint-free optimization method converges within 1000 objective function evaluations. The optimized shapes are close to those obtained by the adjoint-based optimization, and the differences in C D are all within 0.5 counts. The results show that the proposed adjoint-free optimization method has almost the same efficiency and effectiveness as the adjoint-based optimization method in high-dimensional wing shape design.


    Access

    Check access

    Check availability in my library

    Order at Subito €


    Export, share and cite



    Title :

    Adjoint-Free Aerodynamic Shape Optimization of the Common Research Model Wing


    Contributors:
    Li, Jichao (author) / Zhang, Mengqi (author)

    Published in:

    AIAA Journal ; 59 , 6 ; 1990-2000


    Publication date :

    2021-01-20


    Size :

    11 pages




    Type of media :

    Article (Journal)


    Type of material :

    Electronic Resource


    Language :

    English