The effect of aerodynamically induced pre-swirl on the acoustic and performance characteristics of an automotive centrifugal compressor is studied experimentally on a steady-flow turbocharger facility. Accompanying flow separation, broadband noise is generated as the flow rate of the compressor is reduced and the incidence angle of the flow relative to the leading edge of the inducer blades increases. By incorporating an air jet upstream of the inducer, a tangential (swirl) component of velocity is added to the incoming flow, which improves the incidence angle particularly at low to mid-flow rates. Experimental data for a configuration with a swirl jet is then compared to a baseline with no swirl. The induced jet is shown to improve the surge line over the baseline configuration at all rotational speeds examined, while restricting the maximum flow rate. At high flow rates, the swirl jet increases the compressor inlet noise levels over a wide frequency range. At low to mid-flow rates, on the other hand, the swirl jet reduces the broadband whoosh noise in the 4-11 kHz range. Mild surge detected for the baseline configuration in the 15-35 Hz range at mid flow rates and high speeds is also suppressed with the swirl jet configuration due to favorable local changes in slope of the compressor characteristics.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Effect of Aerodynamically Induced Pre-Swirl on Centrifugal Compressor Acoustics and Performance


    Weitere Titelangaben:

    Sae International Journal of Passenger Cars. Mechanical Systems
    Sae Int. J. Passeng. Cars - Mech. Syst


    Beteiligte:
    Selamet, Ahmet (Autor:in) / Karim, Ahsanul (Autor:in) / Miazgowicz, Keith (Autor:in) / Figurella, Neil (Autor:in) / Host, Ray (Autor:in) / Dehner, Rick (Autor:in)

    Kongress:

    SAE 2015 Noise and Vibration Conference and Exhibition ; 2015



    Erscheinungsdatum :

    2015-06-15


    Format / Umfang :

    8 pages




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Print


    Sprache :

    Englisch