Although an electric railway is an ecological transportation system, there are some obstacles when an electric railway is installed: the high cost for installation and the detrimental effect on the environment. A contactless power transfer system (CPT system) is a solid solution for these obstacles. However, a CPT system for a railway application needs to have a high capacity and a tolerance to the misalignment of the coils. In this paper, inductive power transfer theory, which is able to transfer a greater amount of energy than the electromagnetic resonance method is chosen, and its tolerance to the misalignment is our focus. The authors measure various core shapes, and their coupling coefficients, leakage inductances, and excitation inductances according to the misalignment are obtained with a finite element method (FEM) analysis. By using these parameters, the transmitted power and efficiency are calculated by two equivalent circuits: the S/S circuit and the S/P circuit. Finally, by comparing the parameters and transmitted power of each core shape and circuit, the authors show that the circular core can transfer 100 kW of energy for a misalignment of 300 mm.


    Zugriff

    Zugriff über TIB

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Research on the Characteristic Change in an Inductive‐Coupling‐Type Contactless Power Transformer for a Railway According to the Core Shapes and Misalignment Utilizing a T‐Type Equivalent Circuit



    Erschienen in:

    Erscheinungsdatum :

    2016




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Print


    Sprache :

    Englisch



    Klassifikation :

    BKL:    53.00 / 53.33 / 52.53 Kraftwerkstechnik / 53.31 / 52.53 / 53.33 Elektrische Maschinen und Antriebe / 53.00 Elektrotechnik: Allgemeines / 53.31 Elektrische Energieübertragung
    Lokalklassifikation TIB:    770/5600/8000



    Core shape analysis for contactless transformer of Railway Inductive Power Supply

    Dias, Joao Victor Pinon Pereira / Kim, Hyungchul / Jang, Donguk | IEEE | 2012



    Contactless inductive power supply

    Meins, Jürgen / Bühler, Günther / Czainski, Robert et al. | Tema Archiv | 2006


    Contactless inductive power supply

    Mein, Jürgen | IuD Bahn | 2006