The study explores the specifications of microscopic traffic models that could capture congestion dynamics and model accident-prone behaviors on a highway section in greater realism than existing models currently used in practice (commercial software). A comparative assessment of several major acceleration models is conducted, especially for congestion formation and incident modeling. On the basis of this assessment, alternative specifications for car-following and lane-changing models are developed and implemented in a microscopic simulation framework. The models are calibrated and compared for resulting vehicle trajectories and macroscopic flow-density relationships. Experiments are conducted with the models under different degrees of relaxation of the safety constraints typically applied in conjunction with simulation codes used in practice. The ability of the proposed specifications to capture traffic behavior in extreme situations is examined. The results suggest that these specifications offer an improved basis for microscopic traffic simulation for situations that do not require an accident-free environment. As such, the same basic behavior model structure could accommodate both extreme situations (evacuation scenarios, oversaturated networks) as well as normal daily traffic conditions.


    Zugriff

    Download

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    From Existing Accident-Free Car-Following Models to Colliding Vehicles


    Untertitel :

    Exploration and Assessment


    Weitere Titelangaben:

    Transportation Research Record


    Beteiligte:


    Erscheinungsdatum :

    2008-01-01




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch






    ACCIDENT INFORMING APPARATUS FOR VEHICLES

    Europäisches Patentamt | 2016

    Freier Zugriff

    Accident reporting system for vehicles

    WANAMI SHINGO / KOBAYASHI SHIGENORI | Europäisches Patentamt | 2016

    Freier Zugriff