This thesis presents the development and implementation of an end-to-end simulation environment for robotic space missions. The 'Robotic Actuation, Control, and On-Orbit Navigation Simulator', RacoonSim, is designed for enhancing the development of new technologies and strategies in space robotics. It allows testing of both teleoperated and autonomous robotic scenarios at each development stage. Hence, proof of concept simulations at very low system definition level are possible as well as closed loop verification tests and optimizations of design details. The challenges of such a simulation environment are twofold: Due to the complex nature of dexterous robotic operations in the close proximity of sensitive target systems, human factors, situation awareness and performance of the human control team can have an significant impact on the mission. Hence, the implementation of all technical and environmental features of on-orbit robotics is required without overstretching computational performance and maintaining real-time executability This includes the representation of all mission segments and of environmental and system intrinsic properties. In addition, a highly adaptable software architecture and model interpretation method is required that is able to represent a high diversity of currently even unknown scenarios and systems. In order to counter those challenges, an analysis and decomposition of on-orbit robotics missions is performed in order to identify reusable, functional abstractions of characteristic elements. Those functions are implemented within a modular software architecture with highly specialized and optimized core engines for individual computational tasks. A dedicated physics module handles multi-body dynamics, surface contacts and collisions and mechanical constraints. An on-board control simulation module provides an environment for Rapid Control Prototyping and low-level subsystem representation. Visual feedback of different camera perspectives is realized by a 3D rendering engine. Telecommands are transmitted from a dedicated, adaptable Man-Machine Interface. Real-time data exchange between all modules is realized by a dedicated model server. System models are directly translated from CAD assemblies. In addition to reducing additional modelling effort, model redundancies are avoided. The simulation concept is demonstrated by three exemplary simulations comprising a high diversity of mission types and spacecraft systems: A manually teleoperated robotic capture of a large satellite, a pre-planned fly-around inspection by a light weight freeflyer and autonomous docking with a spinning and nutating target.


    Zugriff

    Zugriff über TIB

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    End-to-End simulation of teleoperated on-orbit robotics


    Beteiligte:

    Erschienen in:

    Raumfahrt ; 1-274


    Erscheinungsdatum :

    2014


    Format / Umfang :

    274 Seiten, Bilder, Tabellen, Quellen



    Medientyp :

    Hochschulschrift


    Format :

    Print


    Sprache :

    Englisch




    Servicing Aid Tool: A Teleoperated Robotics System for Space Applications

    K. W. Dorman / J. L. Pullen / W. O. Keksz et al. | NTIS | 1994


    The Servicing Aid Tool: A Teleoperated Robotics System for Space Applications

    United States; National Aeronautics and Space Administration / United States; Air Force | British Library Conference Proceedings | 1993


    The servicing aid tool: A teleoperated robotics system for space applications

    Dorman, Keith W. / Pullen, John L. / Keksz, William O. et al. | NTRS | 1994



    Teleoperated pipe manipulation

    Lee, Junbok / Lorenc, S.J. / Bernold, L.E. | Tema Archiv | 1998