A novel air-brake concept for next-generation, low-noise civil aircraft is introduced. Deployment of such devices in clean airframe configuration can potentially reduce aircraft source noise and noise propagation to the ground. The generation of swirling outflow from a duct, such as an aircraft engine, is demonstrated to have high drag and low noise. The simplest configuration is a ram pressure-driven duct with stationary swirl vanes, a so-called swirl tube. A detailed aerodynamic design is performed using first principles based modeling and high-fidelity numerical simulations. The swirl-drag-noise relationship is quantified through scale-model aerodynamic and aeroacoustic wind tunnel tests. The maximum measured stable flow drag coefficient is 0.83 at exit swirl angles close to 50 deg. The acoustic signature, extrapolated to full-scale, is found to be well below the background noise of a well-populated area. Vortex breakdown is found to be the aerodynamically and acoustically limiting phenomenon, generating a white-noise signature that is about 15 dB louder than a stable swirling flow.


    Zugriff

    Zugriff über TIB

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    A novel turbomachinery air-brake concept for quiet aircraft


    Weitere Titelangaben:

    Ein neuartiges Luftbremskonzept für Strahltriebwerke leiser Flugzeuge


    Beteiligte:
    Shah, P.N. (Autor:in) / Mobed, D.D. (Autor:in) / Spakovszky, Z.S. (Autor:in)

    Erschienen in:

    Erscheinungsdatum :

    2010


    Format / Umfang :

    11 Seiten, 16 Bilder, 1 Tabelle, 38 Quellen




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Print


    Sprache :

    Englisch





    TURBOMACHINERY FOR AN AIRCRAFT

    FERNÁNDEZ LÓPEZ PIO | Europäisches Patentamt | 2022

    Freier Zugriff

    NASAs Quiet Supersonic Aircraft

    Jones, Tom | NTRS | 2017


    NASAs Quiet Supersonic Aircraft

    T. Jones | NTIS | 2017


    Quiet Jet Transport Aircraft

    O. W. Nicks / R. E. Kuhn / J. L. Johnson et al. | NTIS | 1973