The mechanical behaviors of granular materials are dominated by internal structure, which are related to fabric evolution during loading. This study investigated the fabric evolution of granular materials with different densities and stress paths under true triaxial conditions. A series of discrete element numerical simulations with different intermediate principal stress coefficient b were carried out along the constant mean stress p and the constant minor principal stress σ3 stress paths for both loose and dense specimens. The results indicated that the constant-p stress path produced a faster increase in stress ratio than the constant-σ3 stress path at the same b. The effects of specimen density on the peak friction angle are greater than that of stress path. The microscopic analyses revealed that the constant-p stress path facilitates a much more preferential distribution of normal contact force network along the major principal direction. The discrepancies in the peak stress ratio under two stress paths were thus interpreted. The dense specimen will rapidly form a higher anisotropic distribution of the normal contact force network upon shearing, and its anisotropic intensity was almost twice that of the loose specimen at the peak stress state. In addition, a unique relationship between the strong deviatoric fabric ratio and stress ratio was presented. The ratio of the two was approximately 1.0 regardless of stress path, density and b value. Finally, an underlying relationship between the stress components and the whole fabric components at the critical state was confirmed by introducing a new stress tensor. The three principal components (F1, F2 and F3) of the whole fabric tensor can be quantitatively represented with the imposed three principal stress components (σ1, σ2 and σ3) by employing a relationship of F1:F2:F3 = σ10.2720.2730.27. It provides a more comprehensive perspective to analyze the macro-micro performances of granular materials at the critical state.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Macro-micro Performances of Granular Materials Considering the Influences of Density and Stress Path under True Triaxial Conditions: A DEM Investigation


    Weitere Titelangaben:

    KSCE J Civ Eng


    Beteiligte:
    Wang, Hailin (Autor:in) / Sun, Hong (Autor:in) / Ge, Xiurun (Autor:in) / Niu, Fujun (Autor:in)

    Erschienen in:

    Erscheinungsdatum :

    2023-10-01


    Format / Umfang :

    16 pages




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Macro-Micro Mechanical Behavior of Crushable Granular Materials under Generalized Stress Conditions

    Liu, Yiming / Xu, Chenming / Xu, Guofang et al. | Springer Verlag | 2021


    Strain Responses of Granular Base Materials in Stress Path Cyclic Triaxial Testing

    Lo, S.-C. R. / Chen, K. | Transportation Research Record | 1999




    Triaxial Characterization of Minnesota Road Research Project Granular Materials

    Garg, Navneet / Thompson, Marshall R. | Transportation Research Record | 1997