Air pollution caused by exhaust particulate matter (PM) from vehicular traffic is a major health issue. Increasingly strict regulations of vehicle emission have been introduced and efforts have been put on both the suppression of particulate formation inside the engine cylinders and the development of after-treatment technologies such as filters. With modern direct injected engines that produce a large number of really small sub-micron particles, the focus has increased even further and now also includes a number count.The problem of calculating particle trajectories in flow ducts like vehicle exhaust systems is challenging but important to further improve the technology. The interaction between particles and oscillating flows may lead to the formation of particle groups (regions where the particle concentration is increased), yielding a possibility of realizing particle agglomeration. The oscillating flow may simply be hydrodynamic or as assumed here: the flow oscillations are created by sound propagation rather than hydrodynamic approaches. An analysis is presented which gives the relationship between the speed of sound, the mean flow velocity and the amplitude of the acoustic particle velocity for particle agglomeration to be feasible. It is shown that it can be achieved if the convective speed of sound is reduced to the same order as the mean flow velocity. It is therefore suggested to use the so-called acoustic metamaterials, which can help control, direct and manipulate sound waves. At this stage a phenomenological 1D model is used for the analysis, which allows the authors to build an understanding of the effect of the sound waves and flow oscillations on particle motion and paves the way for further analysis on particle agglomeration.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Particle Number Reduction in Automotive Exhausts Using Acoustic Metamaterials


    Weitere Titelangaben:

    Sae Int. J. Engines


    Beteiligte:
    Katoshevski, David (Autor:in) / Boden, Hans (Autor:in) / Abom, Mats (Autor:in) / Karlsson, Mikael (Autor:in) / Zhang, Zhe (Autor:in)

    Kongress:

    WCX™ 17: SAE World Congress Experience ; 2017


    Erschienen in:

    Erscheinungsdatum :

    2017-03-28


    Format / Umfang :

    7 pages




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Print


    Sprache :

    Englisch




    Particle Number Reduction in Automotive Exhausts by Controlled Grouping

    Katoshevski, David / Majal, Ghulam Mustafa / Mihaescu, Mihai et al. | SAE Technical Papers | 2018


    Plasma-Enhanced Catalysis for Automotive Exhausts

    Rich, J. William / Wodzisz, Ken / Abrams, Lisa M. et al. | SAE Technical Papers | 1997


    PM stainless steels uses in automotive exhausts

    Causton, R.J. / Mumau, C. / Cimino, T.M. | Tema Archiv | 1998


    UV-based pollutant quantification in automotive exhausts [6198-06]

    Hawe, E. / Dooly, G. / Fitzpatrick, C. et al. | British Library Conference Proceedings | 2006


    Smoky exhausts

    Manville, W.W. / Cloud, G.H. / Blackwood, A.J. et al. | Engineering Index Backfile | 1941