In the next years, the upcoming emission legislations are expected to introduce further restrictions on the admittable level of pollutants from vehicles measured on homologation cycles and real drive tests. In this context, the strict control of pollutant emissions at the cold start will become a crucial point to comply with the new regulation standards. This will necessarily require the implementation of novel strategies to speed-up the light-off of the reactions occurring in the after-treatment system, since the cold start conditions are the most critical one for cumulative emissions. Among the different possible technological solutions, this paper focuses on the evaluation of the potential of a burner system, which is activated before the engine start. The hypothetical burner exploits the lean combustion of an air-gasoline mixture to generate a high temperature gas stream which is directed to the catalyst section promoting a fast heating of the substrate. In this work, an experimental test bench has been adopted to characterize the thermal transient of the after-treatment system when the burner-like system is activated, monitoring the temperature of the gas flow and the temperature of the metallic walls at different locations. Moreover, a CFD model has been developed to investigate the light-off of the reactions during the initial operation of the burner and the subsequent start of the engine. The model, developed on the basis of the OpenFOAM code, resorts to a multi-region approach, where different meshes are employed to describe the fluid domain and the solid regions, namely the catalytic porous substrates and the metallic walls constituting pipes and canning. Specific submodels are implemented to consider flow resistance, heat transfer, mass transfer and catalytic reactions occurring in the catalyst region. The CFD framework has been initially validated on the experimental data acquired on the test bench. The methodology has been then applied to the preliminary analysis of the catalyst light-off at engine cold start, considering a full exhaust line equipped with burner-like system.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Numerical Assessment of an After-Treatment System Equipped with a Burner to Speed-Up the Light-Off during Engine Cold Start


    Weitere Titelangaben:

    Sae Technical Papers


    Beteiligte:

    Kongress:

    15th International Conference on Engines & Vehicles ; 2021



    Erscheinungsdatum :

    2021-09-05




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Print


    Sprache :

    Englisch




    Pre-Oiling System during Cold-Start of SI Engine

    Parpola, Matti / Satosuo, Petri | SAE Technical Papers | 1994


    COLD TEMPERATURE ENGINE START

    NEDOREZOV FELIX / JAHR KENNETH / FRAIT STEVEN ANATOLE et al. | Europäisches Patentamt | 2016

    Freier Zugriff

    Cold temperature engine start

    NEDOREZOV FELIX / JAHR KENNETH / FRAIT STEVEN ANATOLE et al. | Europäisches Patentamt | 2016

    Freier Zugriff

    Engine cold-start testing

    Lee,S. / McGee,J.M. / Quay,B.D. et al. | Kraftfahrwesen | 2000


    Pre-oil system during cold-start of spark ignition engine

    Parpola,M. / Satosuo,P. / Helsinki Inst.of Technol.,FI | Kraftfahrwesen | 1994