Abstract Shared autonomous (fully-automated) vehicles (SAVs) represent an emerging transportation mode for driverless and on-demand transport. Early actors include Google and Europe’s CityMobil2, who seek pilot deployments in low-speed settings. This work investigates SAVs’ potential for U.S. urban areas via multiple applications across the Austin, Texas, network. This work describes advances to existing agent- and network-based SAV simulations by enabling dynamic ride-sharing (DRS, which pools multiple travelers with similar origins, destinations and departure times in the same vehicle), optimizing fleet sizing, and anticipating profitability for operators in settings with no speed limitations on the vehicles and at adoption levels below 10 % of all personal trip-making in the region. Results suggest that DRS reduces average service times (wait times plus in-vehicle travel times) and travel costs for SAV users, even after accounting for extra passenger pick-ups, drop-offs and non-direct routings. While the base-case scenario (serving 56,324 person-trips per day, on average) suggest that a fleet of SAVs allowing for DRS may result in vehicle-miles traveled (VMT) that exceed person-trip miles demanded (due to anticipatory relocations of empty vehicles, between trip calls), it is possible to reduce overall VMT as trip-making intensity (SAV membership) rises and/or DRS users become more flexible in their trip timing and routing. Indeed, DRS appears critical to avoiding new congestion problems, since VMT may increase by over 8 % without any ride-sharing. Finally, these simulation results suggest that a private fleet operator paying $70,000 per new SAV could earn a 19 % annual (long-term) return on investment while offering SAV services at $1.00 per mile for a non-shared trip (which is less than a third of Austin’s average taxi cab fare).


    Zugriff

    Zugriff über TIB

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Dynamic ride-sharing and fleet sizing for a system of shared autonomous vehicles in Austin, Texas


    Beteiligte:

    Erschienen in:

    Erscheinungsdatum :

    2016




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Print


    Sprache :

    Englisch



    Klassifikation :

    BKL:    55.80 Verkehrswesen, Transportwesen: Allgemeines / 74.75 Verkehrsplanung, Verkehrspolitik
    Lokalklassifikation TIB:    535/7000




    Operations of Shared Autonomous Vehicle Fleet for Austin, Texas, Market

    Fagnant, Daniel J. / Kockelman, Kara M. / Bansal, Prateek | Transportation Research Record | 2019


    Benefits and Costs of Ride-Sharing in Shared Automated Vehicles across Austin, Texas: Opportunities for Congestion Pricing

    Gurumurthy, Krishna Murthy / Kockelman, Kara M. / Simoni, Michele D. | Transportation Research Record | 2019



    Tracking a system of shared autonomous vehicles across the Austin, Texas network using agent-based simulation

    Liu, Jun / Kockelman, Kara M. / Boesch, Patrick M. et al. | Online Contents | 2017