Prolonged exposure to microgravity in space flight missions (days) impairs the mechanisms responsible for defense of arterial blood pressure (ABP) and cardiac output (CO) against orthostatic stress in the post-flight period. The mechanisms responsible for the observed orthostatic intolerance are not yet completely understood. Additionally, effective counter measures to attenuate this pathophysiological response are not available. The aim of this study was to investigate the ability of our proposed system identification method to predict closed-loop dynamic changes in TPR induced by changes in mean arterial pressure (MAP) and right atrial pressure (RAP). For this purpose we designed and employed a novel experimental animal model for the examination of arterial and cardiopulmonary baroreceptors in the dynamic closed-loop control of total peripheral resistance (TPR), and applied system identification to the analysis of beat-to-beat fluctuations in the measured signals. Grant numbers: NAG5-4989. c 2001. Elsevier Science Ltd. All rights reserved.


    Zugriff

    Zugriff über TIB

    Verfügbarkeit in meiner Bibliothek prüfen


    Exportieren, teilen und zitieren



    Titel :

    System identification of dynamic closed-loop control of total peripheral resistance by arterial and cardiopulmonary baroreceptors


    Beteiligte:
    Aljuri, A. N. (Autor:in) / Bursac, N. (Autor:in) / Marini, R. (Autor:in) / Cohen, R. J. (Autor:in)

    Erschienen in:

    Erscheinungsdatum :

    2001-08-01



    Medientyp :

    Sonstige


    Format :

    Keine Angabe


    Sprache :

    Englisch




    System identification of dynamic closed-loop control of total peripheral resistance by arterial and cardiopulmonary baroreceptors

    Aljuri, A. N. / Bursac, N. / Marini, R. et al. | British Library Conference Proceedings | 2001



    Dynamic and Closed-Loop Control

    Joslin, Ronald D. / Miller, Daniel N. | AIAA | 2009



    Closed-Loop Regulation of Arterial Pressure after Acute Brain Death

    Soltesz, Kristian / Sjöberg, Trygve / Jansson, Tomas et al. | BASE | 2018

    Freier Zugriff