Free-to-roll wind tunnel tests were conducted and a computer simulation exercise was performed in an effort to investigate in detail the mechanism of wing rock on a configuration that consisted of a highly-slender forebody and a 78 deg swept delta wing. In the wind tunnel test, the roll angle and wing surface pressures were measured during the wing rock motion. A limit cycle oscillation was observed for angles of attack between 22 deg and 30 deg. In general, the wind tunnel test confirmed that the main flow phenomena responsible for the wing-body-tail wing rock are the interactions between the forebody and the wing vortices. The variation of roll acceleration (determined from the second derivative of the roll angle time history) with roll angle clearly showed the energy balance necessary to sustain the limit cycle oscillation. Pressure measurements on the wing revealed the hysteresis of the wing rock process. First, second and nth order models for the aerodynamic damping were developed and examined with a one degree of freedom computer simulation. Very good agreement with the observed behavior from the wind tunnel was obtained.


    Zugriff

    Zugriff über TIB

    Verfügbarkeit in meiner Bibliothek prüfen


    Exportieren, teilen und zitieren



    Titel :

    Experimental and numerical analysis of the wing rock characteristics of a 'wing-body-tail' configuration


    Beteiligte:

    Kongress:

    AIAA, Aerospace Sciences Meeting and Exhibit ; 1993 ; Reno, NV, United States


    Erscheinungsdatum :

    1993-01-01


    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Keine Angabe


    Sprache :

    Englisch





    Characteristics of wing/body/tail configurations

    Dillenius, M. F. E. / Goodwin, F. K. / Kline, D. M. et al. | NTRS | 1979


    Numerical and laboratory experiments on a new wing-body-tail configuration

    Smith, Lelanie / Davis, Tyler W. / Spedding, Geoffrey et al. | AIAA | 2016