Highlights Soil-tool interaction for cohesive soil is modeled with DEM. Model is based on the macromechanical properties of cohesive soil. Calibration is done by simulated triaxial compression tests. The model is scale independent. Results show good agreement with small-scale laboratory tests and large-scale field tests.

    Abstract Soil can roughly be classified into cohesionless, cohesive, and cemented soil. In this contribution, a discrete element model for the simulation of cohesive soil is presented. It is based on a model for cohesionless material with spherical particles, normal repulsive and frictional contacts, as well as rolling resistance with an elastic limit to compensate the excessive particle rolling. The cohesive behavior is modeled by an additional attractive normal force between particles. The model is not derived from one of the microscopic origins of cohesion, such as liquid bridges or electrostatic forces. Instead, it is set up in analogy to the macroscopic shear failure characteristics of cohesive soil. The model is stress history dependent. By that, the amount of cohesion is limited by the pressure that contacting particles have experienced during the course of the simulation. The discrete element model is shown to be scale invariant in the quasi-static regime, i.e. if all lengths of the model are scaled, the results remain unaffected by the scaling. The model is applied to a small-scale laboratory test and an excavator digging in natural cohesive soil. The contact parameters are calibrated by simulated triaxial compression tests. A comparison between simulation and measurement shows good qualitative and quantitative agreement.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    A discrete element model and its experimental validation for the prediction of draft forces in cohesive soil


    Beteiligte:

    Erschienen in:

    Erscheinungsdatum :

    2014-04-05


    Format / Umfang :

    12 pages




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch