Highlights Scalable scheme controls multi-line transit systems and compensates for bunching. Scheme improves performance for any given schedule, even with little slack. Scheme isolates malfunctions to the bus suffering them. Scheme implemented successfully in real life, including a cruising guidance feature. Drivers found to comply less fully with the system’s advice when it is highly variable.

    Abstract This paper proposes a dynamic control method to overcome bunching and improve the regularity of fixed-route transit systems. The method uses a combination of dynamic holding and en-route driver guidance to achieve its objectives. It applies to systems with a mix of headway-based and schedule-based lines but it is evaluated for scheduled systems as this is the more challenging application. Improved schedule adherence is the goal. The method’s calculation complexity per piece of advice does not increase with system size. As a result, the method is scalable and can be used with large multi-line systems, no matter how complex. When controlled, each vehicle is mostly affected by exogenous disturbances (e.g. traffic) and very little by other vehicles. As a result, disruptions to a vehicle or group of vehicles caused by inattentive drivers or control equipment failures remain confined to the vehicles experiencing the problems. The control method effectively quarantines “disease”. The method is evaluated analytically and with simulations over a broad range of conditions, including schedules with zero slack. The method was also evaluated by observing the performance of a real world multi-line system that uses inexpensive on-board tablets to apply the control. The evaluation addresses driver compliance and equipment malfunction issues. It is found that the method is resilient and improves reliability considerably even under challenging conditions.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Dynamic control of complex transit systems


    Beteiligte:


    Erscheinungsdatum :

    2015-09-01


    Format / Umfang :

    15 pages




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Dynamic control of complex transit systems

    Argote-Cabanero, Juan | Online Contents | 2015


    Transit Management and Control Systems

    Dornfeld,S. / Berney,L.G. / Gruver,G.W. et al. | Kraftfahrwesen | 1980


    Dynamic transit accessibility and transit gap causality analysis

    Fayyaz, S. Kiavash / Liu, Xiaoyue Cathy / Porter, Richard J. | Elsevier | 2017


    Dynamic transit accessibility and transit gap causality analysis

    Fayyaz, S. Kiavash | Online Contents | 2017


    Comparison of dynamic control strategies for transit operations

    Muñoz, Juan Carlos | Online Contents | 2013