Highlights We present aggregate and disaggregate analyses for single- and multi-vehicle crashes. Two different Bayesian hierarchical models were developed for crash frequency data. Disaggregate models were developed for single- and multi-vehicle crashes separately. Hierarchical logistic regression models were used to address unobserved heterogeneit.

    Abstract This study presents multi-level analyses for single- and multi-vehicle crashes on a mountainous freeway. Data from a 15-mile mountainous freeway section on I-70 were investigated. Both aggregate and disaggregate models for the two crash conditions were developed. Five years of crash data were used in the aggregate investigation, while the disaggregate models utilized one year of crash data along with real-time traffic and weather data. For the aggregate analyses, safety performance functions were developed for the purpose of revealing the contributing factors for each crash type. Two methodologies, a Bayesian bivariate Poisson-lognormal model and a Bayesian hierarchical Poisson model with correlated random effects, were estimated to simultaneously analyze the two crash conditions with consideration of possible correlations. Except for the factors related to geometric characteristics, two exposure parameters (annual average daily traffic and segment length) were included. Two different sets of significant explanatory and exposure variables were identified for the single-vehicle (SV) and multi-vehicle (MV) crashes. It was found that the Bayesian bivariate Poisson-lognormal model is superior to the Bayesian hierarchical Poisson model, the former with a substantially lower DIC and more significant variables. In addition to the aggregate analyses, microscopic real-time crash risk evaluation models were developed for the two crash conditions. Multi-level Bayesian logistic regression models were estimated with the random parameters accounting for seasonal variations, crash-unit-level diversity and segment-level random effects capturing unobserved heterogeneity caused by the geometric characteristics. The model results indicate that the effects of the selected variables on crash occurrence vary across seasons and crash units; and that geometric characteristic variables contribute to the segment variations: the more unobserved heterogeneity have been accounted, the better classification ability. Potential applications of the modeling results from both analysis approaches are discussed.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Multi-level Bayesian analyses for single- and multi-vehicle freeway crashes


    Beteiligte:
    Yu, Rongjie (Autor:in) / Abdel-Aty, Mohamed (Autor:in)

    Erschienen in:

    Erscheinungsdatum :

    2013-04-16


    Format / Umfang :

    9 pages




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch







    Analysis of Crashes on Freeway Weaving Sections

    Mallipaddi, Venkata / Anderson, Michael | ASCE | 2020


    Analysis of Crashes on Freeway Weaving Sections

    Mallipaddi, Venkata / Anderson, Michael | TIBKAT | 2020