Highlights A landing strategy for a hopping rover using attitude control is proposed. Factors that affect the landing states of a cube-shaped hopping rover is studied. Three control schemes are developed and compared on Bennu asteroid.

    Abstract A hopping rover that is driven only by internal or external attitude actuators is an ideal mobility approach for surface exploration of small solar system bodies. Without thrust control and grasping mechanisms, a hopping rover is mechanically simple to design and less prone to mechanical failures, but faces challenges during soft landing. It may rebound from the surface, causing deviations from its original landing site. In this paper, landing of a hopping rover on the surface of an asteroid is investigated, and a strategy using only attitude control to shorten the landing distance is proposed. Based on rigid body impact dynamics, the edge impact configuration is investigated in detail. The factors that affect the impact states of a cube-shaped hopping rover are studied. Then, controlled edge landing is analyzed, in which the post-impact velocity of the hopping rover is changed by controlling its attitude prior to impact. Three guidance schemes are developed, followed by attitude profile generation and finite time stable attitude control. Finally, simulations are performed on an ideal flat surface and uneven terrain. The results show that controlled edge landing can effectively reduce the landing distance and settling time, compared with uncontrolled landing. This study on hopping motion on the surface of an irregular-shaped asteroid with attitude control, can provide a reference for hopper trajectory plan in future asteroid surface explorations.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Landing of hopping rovers on Irregularly-shaped small bodies using attitude control


    Beteiligte:
    Li, Xiangyu (Autor:in) / Sanyal, Amit K. (Autor:in) / Warier, Rakesh R. (Autor:in) / Qiao, Dong (Autor:in)

    Erschienen in:

    Advances in Space Research ; 65 , 11 ; 2674-2691


    Erscheinungsdatum :

    2020-02-24


    Format / Umfang :

    18 pages




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch