The oscillating buoy wave energy converter (OBWEC) captures wave energy through the undulating movement of the buoy in the waves. In the process of capturing wave energy, the hydrodynamic performance of the buoy plays an important role. This paper designed the “Haida No. 1” OBWEC, in which the buoy adopts a form of swinging motion. In order to further improve the hydrodynamic performance of the buoy, a 2D numerical wave tank (NWT) model is established using ADINA software based on the working principle of the device. According to the motion equation of the buoy in the waves, the influence of the buoy shape, arm length, tilt angle, buoy draft, buoy width, wave height and Power Take-off (PTO) damping on the hydrodynamic performance of the buoy is studied. Finally, a series of physical experiments are performed on the device in a laboratory pool. The experimental results verify the consistency of the numerical results. The research results indicate that the energy conversion efficiency of the device can be improved by optimizing the hydrodynamic performance of the buoy. However, the absorption efficiency of a single buoy for wave energy is limited, so it is very difficult to achieve full absorption of wave energy.


    Zugriff

    Download


    Exportieren, teilen und zitieren



    Titel :

    Numerical Study on the Optimization of Hydrodynamic Performance of Oscillating Buoy Wave Energy Converter


    Beteiligte:
    Lai Wenbin (Autor:in) / Xie Yonghe (Autor:in) / Li Detang (Autor:in)


    Erscheinungsdatum :

    2021




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Unbekannt






    Dynamic modelling of Spar-Buoy oscillating water column wave energy converter

    Bayoumi, Seif / Incecik, Atilla / El-Gamal, Hassan | Taylor & Francis Verlag | 2015


    WAVE ENERGY CONVERTER AND BUOY

    SIDENMARK MIKAEL / RASHID AHMED / BERG ANDREAS | Europäisches Patentamt | 2022

    Freier Zugriff

    WAVE ENERGY CONVERTER AND BUOY

    SIDENMARK MIKAEL / RASHID AHMED / BERG ANDREAS | Europäisches Patentamt | 2021

    Freier Zugriff