This work presents the experimental assessment of a hybrid control scheme based on Deep Reinforcement. Learning (DRL) for obstacle avoidance in robot manipulators. More precisely, relying on an equivalent Linear Parameter Varying (LPV) state-space representation of the system, two operative modes, one based on both joint positions and velocities, one only based on velocity inputs, are activated depending on the measurement of the distance between the robot and the obstacle. Therefore, when the obstacle is close to the robot, a switching mechanism is introduced to enable the DRL algorithm instead of the basic motion planner, thus giving rise to a self-configuring architecture to cope with objects randomly moving in the workspace. The experimental tests of the DRL based collision avoidance hybrid strategy are carried out 011 a physical EPSON VT6 robot manipulator with satisfactory results.


    Zugriff

    Download


    Exportieren, teilen und zitieren



    Titel :

    Experimental assessment of deep reinforcement learning for robot obstacle avoidance: a LPV control perspective



    Erscheinungsdatum :

    2021-01-01



    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Klassifikation :

    DDC:    629



    Towards Dynamic Obstacle Avoidance for Robot Manipulators with Deep Reinforcement Learning

    Zindler, Friedemann / Lucchi, Matteo / Wohlhart, Lucas et al. | Springer Verlag | 2022


    Towards Dynamic Obstacle Avoidance for Robot Manipulators with Deep Reinforcement Learning

    Zindler, Friedemann / Lucchi, Matteo / Wohlhart, Lucas et al. | TIBKAT | 2022


    Shared control of robot manipulators with obstacle avoidance: a deep reinforcement learning approach

    Rubagotti, Matteo / Sangiovanni, Bianca / Nurbayeva, Aigerim et al. | BASE | 2023

    Freier Zugriff

    Towards monocular vision based obstacle avoidance through deep reinforcement learning

    Xie, L / Wang, S / Markham, A et al. | BASE | 2020

    Freier Zugriff

    Path Tracking and Obstacle Avoidance Control Using Deep Reinforcement Learning for Autonomous Vehicles

    Shafique, Fahad / Naeem, Tariq / Farooqi, Ashfaq Hussain | IEEE | 2023