The static-pressure field in the steady and compressible Navier–Stokes equations is decomposed into Euler (inviscid) and dissipative (viscous) partial-pressure fields as a generalization of the incompressible pressure decomposition previously reported by Schmitz and Coder (“Inviscid Circulatory-Pressure Field Derived from the Incompressible Navier–Stokes Equations,” AIAA Journal, Vol. 53, No. 1, 2015, pp. 33–41). The primary purpose of partial-pressure fields is to provide a means of dissecting local drag contributors over a lifting body. The analysis shows that the integral of the Euler pressure over the surface of a lifting body of thickness recovers the Kutta–Joukowski theorem for lift, and results in Maskell’s formula for the vortex-induced drag in the limit of high Reynolds number; the combined integral of the dissipative pressure and wall shear stress results in a generalized form of Oswatitsch’s formula for entropy-flux drag. Transport equations are derived with well-posed boundary conditions for both the Euler and dissipative partial-pressure fields for implementation in computational fluid dynamics codes as a complement to far-field and volumetric methods for drag decomposition of complex aircraft configurations.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Drag Decomposition Using Partial-Pressure Fields in the Compressible Navier–Stokes Equations


    Beteiligte:
    Schmitz, Sven (Autor:in)

    Erschienen in:

    AIAA Journal ; 57 , 5 ; 2030-2038


    Erscheinungsdatum :

    2018-12-28


    Format / Umfang :

    9 pages




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch





    Transformation of the hypersonic compressible Navier-Stokes equations.

    ROGERS, D. F. / U.S. Navy / Officeof Naval Research et al. | AIAA | 1973


    IPG Discretizations of the Compressible Navier-Stokes Equations

    Dolejší, Vít / Holík, Martin / Hozman, Jiří | Springer Verlag | 2010